On Polynomials with Largest Coefficient Sums

HEINZ-JOACHIM RACK

Siemens AG RZN, WA-SD, Postfach 10 33 63, D-4300 Essen 1, West Germany

Communicated by Oved Shisha

Received September 13, 1984; revised September 29, 1987

1. INTRODUCTION AND SURVEY OF RESULTS

Let \mathbb{P}_n denote the linear space of real polynomials P_n of degree not exceeding $n \in \mathbb{N}$, normed in Chebyshev's sense, i.e.,

$$\|P_n\|_{\infty} = \max_{x \in I} |P_n(x)|,$$
(1)

where I = [-1, 1], and let

$$B_n = \{ P_n \in \mathbb{P}_n \colon \|P_n\|_\infty \leq 1 \}$$

$$\tag{2}$$

denote the unit ball in \mathbb{P}_n .

A prominent member of B_n is the *n*th Chebyshev polynomial of the first kind, $T_n = \sum_{k=0}^n t_k^{(n)} id^k$, which is, simultaneously with *n*, an even or odd polynomial; cf. [12]. By id we denote the identical function given by id(x) = x.

About a hundred years ago, V. Markov obtained sharp estimates for

each single coefficient of an arbitrary polynomial $P_n = \sum_{k=0}^n a_k \operatorname{id}^k \in B_n$ in terms of the coefficients of T_n and $T_{n-1} \in B_n$,

$$|a_j| \leqslant \begin{cases} |t_j^{(n)}|, & \text{if } j \equiv n \pmod{2} \\ |t_j^{(n-1)}|, & \text{if } j \equiv n-1 \pmod{2} \end{cases}$$
(3)

(cf., e.g., [5, p. 56]). The integer numbers $t_j^{(n)}$ are explicitly known. In this paper we are concerned with the problem of determining polynomials P_n from B_n which have largest partial sums of coefficients. Thus we are interested in the structure of those polynomials which give the norm of the linear coefficient functionals $F_i: \mathbb{P}_n \to \mathbb{R}$, where

$$F_j(P_n) = a_0 + a_1 + a_2 + \dots + a_j \qquad \left(0 \le j \le n; P_n = \sum_{k=0}^n a_k \operatorname{id}^k \right).$$
 (4)

We shall refer to a $P_n^* \in B_n$ as extremal for F_i if $||P_n^*||_{\infty} = 1$ and

$$F_j(P_n^*) = ||F_j|| = \sup_{P_n \in B_n} |F_j(P_n)|.$$

We note in passing that the trivial upper bound $|F_j(P_n)| \leq \sum_{k=0}^{j} |a_k|$, which can be evaluated via Markov's inequalities (3) yields unreasonable results; see also Theorem 5 below.

A first step towards the posed problem was made by Reimer and Zeller [11] during an investigation into the numerical stability of evaluation schemes for polynomials. They showed in [11, Satz 1] that the partial coefficient sums of the even resp. odd component (depending on $n \in \mathbb{N}$) of $P_n \in B_n$ are maximized in absolute value by those of $\pm T_n$.

The same conclusion was established by Rivlin [12, p. 94] with a different method of proof under the weaker assumption $P_n \in C_n$. Here,

$$C_n = \{ P_n \in \mathbb{P}_n \colon |P_n(\hat{x}_{k,n})| \le 1 \text{ for } k = 0, 1, 2, ..., n \}$$
(5)

and $\hat{x}_{k,n}$ denotes the points where T_n attains its extreme values ± 1 on I,

$$\hat{x}_{k,n} = \cos((n-k)\pi/n), \qquad k = 0, 1, 2, ..., n.$$
 (6)

Note that B_n is a proper subset of C_n $(n \ge 2)$; note also that the lower index of summation in [12, Formula (2.38)] should read j = i.

In [8] we gave an alternative proof for this result in a more general setting, and added to it the sharp upper bounds for the partial coefficient sums of the even resp. odd component of $P_n \in C_n$ if n is odd resp. even. In summary we thus have (cf. [8]): THEOREM 1. Let $P_n = \sum_{k=0}^n a_k \operatorname{id}^k \in C_n$. Then

(i) $|a_0 + a_2 + a_4 + \dots + a_j| \leq |t_0^{(n)} + t_2^{(n)} + t_4^{(n)} + \dots + t_j^{(n)}|,$ if *n* is even and $j \equiv n \pmod{2}$; (7) (ii) $|a_1 + a_3 + a_5 + \dots + a_j| \leq |t_1^{(n)} + t_3^{(n)} + t_5^{(n)} + \dots + t_j^{(n)}|,$ if *n* is odd and $j \equiv n \pmod{2}$; (8) (iii) $|a_0 + a_2 + a_4 + \dots + a_j| \leq |c_0 + c_2 + c_4 + \dots + c_j|,$ if *n* is odd and $j \equiv n - 1 \pmod{2}$; (9)

(iv)
$$|a_1 + a_3 + a_5 + \dots + a_j| \le |c_1 + c_3 + c_5 + \dots + c_j|,$$

if *n* is even and $j \equiv n - 1 \pmod{2}$. (10)

The coefficients c_k stem from the Rogosinski polynomial $\prod = \prod_{n=1} = \sum_{k=0}^{n-1} c_k \operatorname{id}^k \in C_n$; cf. [13].

Let us now turn to the original problem of determining the elements of B_n which maximize the unrestricted partial coefficient sums $F_i(P_n)$. Our main result (Theorem 3 below) gives insight into the structure of these extremal polynomials. They are determined by their number d of alternation points on I, and among them are, in particular, the Chebyshev polynomials (d=n+1), the Zolotarev polynomials (d=n), and the Achieser polynomials (d=n-1). Detailed information on these classical polynomial families can be found in [1, 3, 4, 12] or [14]. The proof of Theorem 3 is based on the well-known characterization theorem of best Chebyshev approximations; cf. [12, Theorem 2.5]. The question of uniqueness of polynomials with largest coefficient sums is discussed in some detail in Section 3 below. In the final section of this paper we determine the extremal polynomials for F_i if $1 \le n \le 4$ and provide a practical estimate for $|F_i(P_n)|$ if $n \ge 5$ in terms of T_n . It is in fact a lucky coincidence that in at least "half" the time, namely if $j \equiv n \pmod{2}$, an extremal polynomial for F_i is given by the Chebyshev polynomial $\pm T_n$. We have shown this result in [9]:

THEOREM 2. Let $P_n = \sum_{k=0}^n a_k \operatorname{id}^k$ and let $P_n \in B_n$ or $P_n \in C_n$. Then

$$|F_i(P_n)| \le |F_i(\pm T_n)|, \quad if \quad j \equiv n \pmod{2}, \tag{11}$$

and hence in particular

$$||F_j|| = |F_j(\pm T_n)|, \quad if \quad j \equiv n \pmod{2}.$$
 (12)

2. THE MAIN RESULT

 $P_n \in B_n$ is said to alternate on I d times $(d \ge 2)$ if there exist points $z_1 < z_2 < \cdots < z_d$ from I (alternation points) with the property $|P_n(z_w)| = 1$

for w = 1, 2,..., d and $P_n(z_w) P_n(z_{w+1}) = -1$ for w = 1, 2, ..., d-1. In what follows it suffices to assume $n \ge 5$ (cf. Proposition 5 below). Since $||F_0|| = 1$ (compare inequality (3)) and $||F_n|| = 1$ in virtue of $|F_n(P_n)| = |P_n(1)|$, it is enough to consider only those functionals F_j with index $j \in \{1, 2, ..., n-1\}$.

THEOREM 3. Let $P_n^* \in B_n$, $n \ge 5$, be extremal for the functional F_j , $1 \le j \le n-1$. Then P_n^* alternates on I d times, where $n-3 \le d \le n+1$.

Proof. Let $P_n^* = \sum_{k=0}^n a_k^* \operatorname{id}^k$ be extremal for F_j , $1 \le j \le n-1$. Put

$$P = \sum_{k=0}^{j} a_{k}^{*} \operatorname{id}^{k} \quad \text{and} \quad P_{n}^{\#} = P - P_{n}^{*}.$$
(13)

This implies $F_i(P_n^{\#}) = 0$ so that

$$P_n^{\#} \in K = \operatorname{kernel}(F_j) = \operatorname{span}(1 - \operatorname{id}^j, \operatorname{id} - \operatorname{id}^j, ..., \operatorname{id}^{j-1} - \operatorname{id}^j, \operatorname{id}^{j+1}, ..., \operatorname{id}^n).$$
(14)

We claim that $P_n^{\#}$ is a best approximation to $P \in \mathbb{P}_n \setminus K$ from K, i.e.,

$$\|P - P_n^{\#}\|_{\infty} \leq \|P - P_n^0\|_{\infty} \quad \text{for all} \quad P_n^0 \in K;$$

On the one hand we obtain (with $P_n^0 \in K$)

$$||F_j|| = |F_j(P)| = |F_j(P) - F_j(P_n^0)| = |F_j(P - P_n^0)| \le ||F_j|| ||P - P_n^0||_{\infty},$$

i.e., $1 \leq ||P - P_n^0||_{\infty}$ for all $P_n^0 \in K$.

On the other hand we get $1 = ||P_n^*||_{\infty} = ||P - P_n^{\#}||_{\infty}$.

According to [12, Theorem 2.5] there exist distinct points $x_1 < x_2 < \cdots < x_r$ from the set

$$E(P_n^*; I) = \{ x \in I: |P_n^*(x)| = 1 \}$$
(15)

of critical points of P_n^* , and positive numbers $\mu_1, \mu_2, ..., \mu_r$ such that

$$\sum_{i=1}^{r} \mu_i P_n^*(x_i) P_n^0(x_i) = 0 \quad \text{for all} \quad P_n^0 \in K,$$
(16)

where $1 \leq r \leq \dim(K) + 1 = n + 1$.

Suppose that $r \le n-2$. We proceed to construct some $Q_n \in K$ which violates Eq. (16) so that $n-1 \le r \le n+1$ holds true. Set

$$R(x) = \prod_{l=1}^{r} (x - x_l) = \sum_{k=0}^{r} b_k x^k$$
(17)

and

$$Q_n(x) = P_n^*(x) + (\alpha + \beta x + \gamma x^2) R(x)$$
(18)

with unspecified real scalars α , β , γ . Obviously, $Q_n \in \mathbb{P}_n$ and $Q_n(x_i) = P_n^*(x_i)$ for i = 1, 2, ..., r so that

$$\sum_{i=1}^{r} \mu_i P_n^*(x_i) Q_n(x_i) > 0.$$
(19)

Furthermore,

$$F_{j}(Q_{n}) = F_{j}(P_{n}^{*}) + \alpha F_{j}(R) + \beta F_{j}(\operatorname{id} R) + \gamma F_{j}(\operatorname{id}^{2} R)$$

= $F_{j}(P_{n}^{*}) + \alpha F_{j}(R) + \beta F_{j-1}(R) + \gamma F_{j-2}(R),$ (20)

with $F_{-1}(R) = 0$ and $F_i(P_n^*) > 0$.

(I) Let r = n - 2. We distinguish several cases concerning the index j to show that the scalars α , β , γ can be chosen in such a manner that $F_i(Q_n) = 0$, i.e., $Q_n \in K$.

Case 1. j = 1. Then, $F_1(Q_n) = F_1(P_n^*) + \alpha F_1(R) + \beta F_0(R)$. It is impossible that $F_1(R) = F_0(R) = 0$, since then R would have a double root at x = 0. Thus take either $\alpha = 0$ and $\beta = -F_1(P_n^*)/F_0(R)$ or $\alpha = -F_1(P_n^*)/F_1(R)$ and $\beta = 0$ to get $F_1(Q_n) = 0$.

Case 2. $j \in \{2, 3, ..., n-2\}$. It is then impossible that $F_j(R) = F_{j-1}(R) = F_{j-2}(R) = 0$, since in this case the two consecutive coefficients b_j and b_{j-1} of R would vanish although R has only real roots, a contradiction to Descartes' rule of signs; cf. [7, Satz 13.4]. Hence at least one of the numbers $F_j(R)$, $F_{j-1}(R)$, or $F_{j-2}(R)$ is different from zero and it is then obvious that in Eq. (20) α , β , and γ can be appropriately chosen so as to yield $F_j(Q_n) = 0$.

Case 3. j=n-1. Then, $F_{n-1}(Q_n) = F_{n-1}(P_n^*) + \alpha R(1) + \beta R(1) + \gamma F_{n-3}(R)$. If $R(1) \neq 0$, the choice $\beta = \gamma = 0$ and $\alpha = -F_{n-1}(P_n^*)/R(1)$ gives $F_{n-1}(Q_n) = 0$; if R(1) = 0, then $F_{n-3}(R) \neq 0$ since otherwise the leading coefficient b_{n-2} of R (which is in fact 1) would vanish. Thus we may take $\alpha = \beta = 0$ and $\gamma = -F_{n-1}(P_n^*)/F_{n-3}(R)$ to force $F_{n-1}(Q_n) = 0$.

(II) Let $1 \le r \le n-3$. Choosing distinct points $y_1, y_2, ..., y_{n-r-2} \in I \setminus \{x_1, ..., x_r\}$ and replacing R(x) in Eq. (17) by

$$\tilde{R}(x) = \prod_{l=1}^{r} (x - x_l) \prod_{u=1}^{n-r-2} (x - y_u)$$
(21)

we can proceed as before and eventually get $Q_n \in K$ if $1 \le r \le n-2$. Thus there are r critical points of P_n^* on I, where $n-1 \le r \le n+1$.

Remarks. (i) It follows from the above considerations that in the special cases j=1 and j=n-1 a contradiction to Eq. (16) can be produced by assuming r=n-1 in place of r=n-2 and putting $\gamma=0$ in Eq. (18). Hence in these two marginal cases one has actually $r \in \{n, n+1\}$ critical points of P_n^* on I.

(ii) It is tempting to make the same assumption r = n - 1 and $\gamma = 0$ in the cases $j \in \{2, 3, ..., n-2\}$ as well. But the attempt fails since for these values of j there exist polynomials R with only real (simple) roots such that

$$F_i(R) = F_{i-1}(R) = 0.$$
(22)

Knowing that P_n^* has $r \in \{n-1, n, n+1\}$ critical points on I we are now in a position to bound the number d of alternation points of P_n^* on I:

(A) r=n+1. By [12, Theorem 2.12] we have either $P_n^* = \pm T_n$ or $P_n^* = \pm 1$ (constant). But $|F_j(\pm 1)| = 1$ is surely smaller than, for example, $|F_j(\pm T_n)|$ or $|F_j(\pm T_{n-1})|$ so that ± 1 cannot be extremal. Thus $P_n^* = \pm T_n$ which means that d=n+1 and the alternation points being the $\hat{x}_{k,n}$ from Eq. (6).

(B) r=n. The first derivative $P_n^{*'}$ of P_n^* vanishes n-2 times at the interior points $x_2 < \cdots < x_{n-1}$ since $P_n^* \in B_n$. If there were, induced by these points, two or more subintervals $[x_q, x_{q+1}]$ with the property $P_n^*(x_q) P_n^*(x_{q+1}) = 1$, then, by Rolle's Theorem, $P_n^{*'}$ would have at least n roots in I and so $P_n^{*'} = 0$ and $P_n^* = 1$, a contradiction.

Therefore there exists at most one subinterval $[x_q, x_{q+1}]$ induced by the interior points where P_n^* does not alternate. Suppose first that P_n^* does not alternate on the interior interval $[x_q, x_{q+1}]$ so that $P_n^{*'}$ has n-1 roots in *I*. If we than had, in addition, $P_n^*(x_1) P_n^*(x_2) = 1$ or $P_n^*(x_{n-1}) P_n^*(x_n) = 1$, this would imply that $P_n^{*'}$ posseses more than n-1 roots in *I*, an impossibility. Hence P_n^* must alternate on the boundary intervals $[x_1, x_2]$ and $[x_{n-1}, x_n]$ (with $P_n^{*'}(x_1) \neq 0 \neq P_n^{*'}(x_n)$) giving a total of d=n-1 alternation points.

Suppose next that P_n^* alternates at all interior points. With regard to the zeros of $P_n^{*'}$ we conclude that either P_n^* alternates on $[x_1, x_2]$ and on $[x_{n-1}, x_n]$ (with $P_n^{*'}(x_1) \neq 0$ or $P_n^{*'}(x_n) \neq 0$) or P_n^* does not alternate on exactly one of these boundary intervals (with $P_n^{*'}(x_1) \neq 0$ resp. $P_n^{*'}(x_n) \neq 0$). This leads to d=n or d=n-1 alternation points of P_n^* on I.

(C) r=n-1. By similar considerations as in (B) we get d=n-1 or d=n-2 or even d=n-3 alternation points of P_n^* on *I*. The latter case occurs, for example, if P_n^* alternates at the interior points $x_2 < \cdots < x_{n-2}$ but neither on $[x_1, x_2]$ nor on $[x_{n-2}, x_{n-1}]$ (with $P_n^{*'}(x_1) \neq 0 \neq P_n^{*'}(x_{n-1})$).

HEINZ-JOACHIM RACK

3. UNIQUENESS OF POLYNOMIALS WITH LARGEST COEFFICIENT SUMS

We know from Theorem 2 that $\sup_{P_n \in B_n} |F_j(P_n)| = \sup_{P_n \in C_n} |F_j(P_n)| = |F_j(\pm T_n)|$, provided that $j \equiv n \pmod{2}$. Examining the proof in [9] we observe that the value of P_n at $x = \hat{x}_{0,n} = -1$ does not matter. Therefore we can state a slightly more general version of Korollar 1 in [9] which includes polynomials P_n satisfying $|P_n(-1)| > 1$. For convenience, we first introduce the set

$$D_n = \{ P_n \in \mathbb{P}_n \colon |P_n(\hat{x}_{k,n})| \le 1 \text{ for } k = 1, 2, ..., n \}$$
(23)

and note that $B_n \subset C_n \subset D_n$.

PROPOSITION 1.

$$\sup_{P_n \in D_n} |F_j(P_n)| = |F_j(\pm T_n)|, \quad if \quad j \equiv n \pmod{2}.$$
(24)

We now consider the question of uniqueness of polynomials with largest partial coefficient sums in D_n , C_n , and B_n . From the proof in [9] also follows that besides $\pm T_n$ there are infinitely many elements in D_n (and in C_n) that attain the sup in Eq. (24).

PROPOSITION 2. Every polynomial $\hat{P}_n \in D_n$ satisfying either $\hat{P}_n(\hat{x}_{k,n}) = (-1)^{n-k}$ or $\hat{P}_n(\hat{x}_{k,n}) = -(-1)^{n-k}$ for k = 1, 2, ..., n yields

$$\sup_{P_n \in D_n} |F_j(P_n)| = |F_j(\hat{P}_n)|, \quad if \quad j \equiv n \pmod{2}.$$
(25)

EXAMPLE 1. Consider the parameterized polynomial $\hat{P}_{5,t} \in D_5$ (with parameter $t \in \mathbb{R}$) given by

$$\hat{P}_{5,t}(x) = 0.1(1+t) + (4.9 - 0.1t) x - 1.2(1+t) x^2 + (1.2t - 18.8) x^3 + 1.6(1+t) x^4 + 1.6(9-t) x^5.$$

It satisfies $\hat{P}_{5,t}(-1) = t$, $\hat{P}_{5,t}(\hat{x}_{k,5}) = (-1)^{5-k}$ for k = 1, 2, 3, 4, 5, and gives the same maximizing partial coefficient sums $|F_j(\hat{P}_{5,t})|, j \in \{1, 3, 5\}$, as $\pm T_5$, where $T_5(x) = 5x - 20x^3 + 16x^5$ (i.e., $T_5 = \hat{P}_{5,-1}$). If $|t| \le 1$, $\hat{P}_{5,t}$ belongs to C_n .

However, if we require a maximizing polynomial $\hat{P}_n \in D_n$ (or $\hat{P}_n \in C_n$) (cf. Proposition 2) to be an element of B_n we obtain $\hat{P}_n = \pm T_n$. This follows from our next statement.

354

PROPOSITION 3. Let $P_n \in B_n$, $n \ge 2$, satisfy $P_n(\hat{x}_{k,n}) = (-1)^{n-k}$ for k = 1, 2, ..., n. Then, $P_n = T_n$.

Proof. Consider the polynomial $G_n = P_n - T_n$. As G_n vanishes at $\hat{x}_{k,n}$ (k = 1, 2, ..., n) we get

$$G_n(x) = K_1 \prod_{k=1}^n (x - \hat{x}_{k,n}) \qquad (K_1 \text{ a constant})$$

and

$$G'_{n}(x) = K_{1} \sum_{\substack{m=1\\k \neq m}}^{n} \prod_{\substack{k=1\\k \neq m}}^{n} (x - \hat{x}_{k,n}).$$
(26)

Since P_n , $T_n \in B_n$ we deduce that G'_n vanishes at the interior points $\hat{x}_{k,n}$ of I (k = 1, 2, ..., n-1) and thus

$$G'_n(x) = K_2 \prod_{k=1}^{n-1} (x - \hat{x}_{k,n})$$
 (K₂ a constant). (27)

Equating (26) and (27) we deduce at $x = \hat{x}_{n,n} = 1$ the identity $K_1 = K_2$, and a comparison of the coefficients of x^{n-1} gives $K_2 = nK_1$. This implies $K_1 = K_2 = 0$ and $P_n = T_n$.

Next, we turn to the question of the uniqueness of extremal polynomials in B_n .

THEOREM 4. The functional F_j $(1 \le j \le n-1; n \ge 5)$ has a unique extremal element in B_n .

Proof. Reconsider Eq. (16) above and choose for $P_n^0 \in K$ the special polynomial $\overline{P}_n^0 = F_j(P_n) P_n^* - ||F_j|| P_n$, where $P_n \in \mathbb{P}_n$ is arbitrary. Obviously, $\overline{P}_n^0 \in K$, and, rearranging Eq. (16), we deduce (see also the proof of Theorem 2.13 in [12]):

$$\sum_{i=1}^{r} \mu_{i} P_{n}^{*}(x_{i}) \overline{P}_{n}^{0}(x_{i}) = 0,$$

$$F_{j}(P_{n}) \sum_{i=1}^{r} \mu_{i} (P_{n}^{*}(x_{i}))^{2} = \sum_{i=1}^{r} \mu_{i} P_{n}^{*}(x_{i}) ||F_{j}|| P_{n}(x_{i}),$$

$$F_{j}(P_{n}) = \sum_{i=1}^{r} \mu_{i} P_{n}^{*}(x_{i}) ||F_{j}|| \mu^{-1} P_{n}(x_{i}),$$

$$F_{j}(P_{n}) = \sum_{i=1}^{r} \alpha_{i} P_{n}(x_{i}),$$
(28)

where $\mu = \mu_1 + \mu_2 + \cdots + \mu_r > 0$ and $\alpha_i = \mu_i P_n^*(x_i) ||F_j|| \mu^{-1}$. We know from the proof of Theorem 3 that in Eq. (28), which is a canonical representation of F_j in the sense of [12, p. 84], there are $r \in \{n-1, n, n+1\}$ terms. Even if we assume the "worst case" concerning the choice of r, r = n - 1, and the distribution of points $x_i \in I$, $-1 = x_1 < x_2 < \cdots < x_{n-2} < x_{n-1} = 1$, we obtain uniqueness of the extremal element for F_j since the sufficient condition for the uniqueness as given in [12, Theorem 2.17] is now in force; this condition reads here, with the notation E(x) = 1, if x = 1 or x = -1, and E(x) = 2, if -1 < x < 1:

$$\sum_{i=1}^{r} E(x_i) = \sum_{i=1}^{n-1} E(x_i) = 2n - 4 > n, \text{ provided that } n \ge 5.$$

The following statement reveals in conjunction with Theorem 3 above that extremal elements for F_j which have $n-3 \le d \le n$ alternation points on I can occur only if $j \equiv n-1 \pmod{2}$.

PROPOSITION 4. The unique extremal element in B_n for F_j $(n \ge 5)$ is

$$T_n$$
, if $j = n - 4h$ $(h = 1, 2, 3, ...)$ (29)

$$-T_n$$
, if $j = n - 2 - 4h$ $(h = 0, 1, 2, ...)$. (30)

Proof. According to Theorem 2, an extremal element for F_j $(1 \le j \le n-1; j \equiv n \pmod{2})$ is given by T_n or by $-T_n$. In either case it is uniquely determined by Theorem 4 if $n \ge 5$. An analysis of the alternating signs of $S_j = t_j^{(n)} + t_{j-2}^{(n)} + t_{j-4}^{(n)} + \cdots$ (cf. Exercise 1.2.19 in [12]) finally establishes (29) and (30).

4. PRACTICAL CALCULATION OF PARTIAL COEFFICIENT SUMS

For small values of n $(1 \le n \le 4)$ extremal elements for F_j can be calculated explicitly; but the calculation is rather lenthy so that we state the results without proof.

PROPOSITION 5. If $n \in \{1, 2, 3, 4\}$ then either $\pm T_n$ or $\pm T_{n-1}$ are extremal for F_i $(0 \le j \le n)$, except in the following three instances:

(a) n=2 and j=1. An extremal polynomial is given by $P_2^*(x) = (7+8x-8x^2)/9$ and one gets $F_1(P_2^*) = ||F_1|| = 15/9 = 1.66666....$ (31)

(b) n=3 and j=2. An extremal polynomial is given by the (improper) Zolotarev polynomial $P_3^*(x) = -T_3(((8 + \sqrt{22})x - 6 + \sqrt{22})/14) =$ $-(270 - 17\sqrt{22})/686 + ((576 + 261\sqrt{22})/686) x + ((246 + 15\sqrt{22})/343) x^2 - ((520 + 107\sqrt{22})/343) x^3$ and one gets

$$F_2(P_3^*) = ||F_2|| = (57 + 22\sqrt{22})/49 = 3.26916....$$
 (32)

(c) n=4 and j=1. An extremal polynomial is given by the (proper) Zolotarev polynomial with parameter t, $1 < t < 1 + \sqrt{2}$,

$$Z_{4,t}(x) = a_0(t) + a_1(t) x + a_2(t) x^2 + a_3(t) x^3 + a_4(t) x^4,$$

where

$$\begin{aligned} a_0(t) &= K_{a,b}(-a^5 + a^4(-2 + 3b) + a^3(-1 + 6b - 3b^2) \\ &+ a^2(3b + 2b^2 + b^3) + a(3b^2 - 2b^3) - b^3) \\ a_1(t) &= K_{a,b}(a^2(-16b + 8b^2) + a(-12b + 8b^2 - 4b^3)) \\ a_2(t) &= K_{a,b}(a^2(8 - 16b) + a(6 - 4b + 2b^2) + 6b - 4b^2 + 2b^3) \\ a_3(t) &= K_{a,b}(8a^2 + 8ab + 8b - 4b^2 - 4) \\ a_4(t) &= K_{a,b}(-6a + 2b - 4) \end{aligned}$$

and

$$K_{a,b} = (b-a)^{-3}(1+a)^{-2}$$

with

$$a = a(t) = (1 - 3t - t^2 - t^3)/(1 + t)^3,$$

$$b = b(t) = (1 + t + 3t^2 - t^3)/(1 + t)^3.$$

One finds $||Z_{4,t}||_{\infty} = 1$ and that $Z_{4,t}$ alternates on I at -1 < a < b < 1:

$$Z_{4, t}(-1) = 1, Z_{4, t}(a) = -1, Z_{4, t}(b) = 1, Z_{4, t}(1) = -1.$$

The (parameterized) value $F_1(Z_{4,t}) = a_0(t) + a_1(t)$ is largest, as differentiation with respect to t shows, if we choose for t the unique positive root of the algebraic equation of degree 14,

$$0 = 3 + 16t + t^{2} + 64t^{3} + 47t^{4} + 96t^{5} + 181t^{6} + 64t^{7} + 89t^{8} + 16t^{9} - 45t^{10} - 11t^{12} - 9t^{14},$$

i.e., $t = t^* = 1.52539...$, which yields

$$F_1(P_4^*) = F_1(Z_{4, t^*}) = ||F_1|| = 3.22652....$$
(33)

Given an arbitrary $n \in \mathbb{N}$ it is not possible to determine the coefficients of P_n^* in explicit power form so that numerical methods have to be applied. However, combining V. Markov's inequalities (3) with Theorem 2, we obtain a convenient bound for the partial coefficient sums of $P_n \in B_n$. This bound is sharp if $j \equiv n \pmod{2}$ and improves Satz 2 in [11]:

THEOREM 5. Let $P_n = \sum_{k=0}^n a_k \operatorname{id}^k \in B_n$, then $|F_j(P_n)| \leq \begin{cases} |F_j(T_n)|, & \text{if } j \equiv n \pmod{2} \\ |F_{j-1}(T_n)| + |t_j^{(n-1)}|, & \text{if } j \equiv n-1 \pmod{2}. \end{cases}$ (34)

EXAMPLE 2. Let n = 8 and $P_8 = \sum_{k=0}^8 a_k \operatorname{id}^k \in B_8$. Since

$$T_7(x) = -7x + 56x^3 - 112x^5 + 64x^7$$

and

$$T_8(x) = 1 - 32x^2 + 160x^4 - 256x^6 + 128x^8$$

we obtain the inequalities

$$|a_0| \le 1, |a_0 + a_1| \le 8, |a_0 + a_1 + a_2| \le 31, |a_0 + \dots + a_3| \le 87,$$

$$|a_0 + \dots + a_4| \le 129, |a_0 + \dots + a_5| \le 241, |a_0 + \dots + a_6| \le 127,$$

$$|a_0 + \dots + a_7| \le 191, |a_0 + \dots + a_8| \le 1.$$

5. CLOSING REMARKS

(i) The case n=4, j=3 in Proposition 5 reveals that a Chebyshev polynomial can be extremal for F_i even if $j \equiv n-1 \pmod{2}$.

(ii) The statement and proof of Theorem 3 can be easily carried over to the coefficient functional H_j given by $H_j(P_n) = a_j + a_{j+1} + \cdots + a_n$, which describes the backward partial sums or Horner sums; cf. [10].

(iii) The problem of maximizing the coefficient sums of a complex polynomial is dealt with in [6].

(iv) Interesting results on the coefficient sums of the Rudin-Shapiro polynomials can be found in [12, p. 128; 2].

References

- 1. N. I. ACHIESER, "Theory of Approximation," Ungar, New York, 1965.
- J. BRILLHART, P. ERDÖS, AND P. MORTON, On sums of Rudin-Shapiro coefficients II, Pacific J. Math. 107 (1983), 39-69.

- 3. B. C. CARLSON AND J. TODD, Zolotarev's first problem—The best approximation by polynomials of degree $\leq n-2$ to $x^n n\sigma x^{n-1}$ in [-1, 1], Aequationes Math. 26 (1983), 1-33.
- 4. N. N. MEIMAN, Polynomials deviating least from zero with an arbitrary number of given coefficients, *Soviet Math. Dokl.* 1 (1960), 72–75.
- 5. I. P. NATANSON, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
- D. J. NEWMAN, Polynomials with large partial sums, J. Approx. Theory 23 (1978), 187-190.
- 7. N. OBRESCHKOFF, "Verteilung und Berechnung der Nullstellen reeller Polynome," Deutscher Verlag der Wissenschaften, Berlin, 1963.
- 8. H.-J. RACK, Further extremal properties of the Rogosinski polynomials, *Glas. Mat. Ser. III* **19** (1984), 245–253.
- 9. H.-J. RACK, Abschätzung der Teilsummen reeller Polynome, Math. Z. 182 (1983), 549-552.
- 10. M. REIMER, Bounds for the Horner sums, SIAM J. Numer. Anal. 5 (1968), 461-469.
- 11. M. REIMER AND K. ZELLER, Abschätzung der Teilsummen reeller Polynome, Math. Z. 99 (1967), 101-104.
- 12. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.
- 13. W. ROGOSINSKI, Some elementary inequalities for polynomials, *Math. Gaz.* **39** (1955), 7–12.
- 14. E. V. VORONOVSKAJA, "The Functional Method and Its Applications," Translations of Mathematical Monographs, Vol. 28, Amer. Math. Soc., Providence, RI, 1970.