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Let F
J

denote the linear functional that assigns to a real polynomial Pn(x)=
ao +alx +a2x2 + ... +anxn its jth partial coefficient sum FiPn) = ao +al + a2 +
... + aj (l';;;j';;; n -1; n ~ 5). It is demonstrated that a polynomial P: which is
extremal for Fj (i.e., liP: 1100= 1 (uniform norm on 1= [ -1, 1]) and FiP:) = II~ II)
must have d alternation points on I, where n - 3 ,;;; d,;;; n + 1. This result comple­
ments the author's previous one [Math. Z. 182 (1983), 549-552] stating that about
"half' the time, namely, if j == n (mod 2), the nth Chebyshev polynomial of the first
kind, ± Tn' which posseses d = n + 1 alternation points on I, is extremal for Fj •

Known results on this subject are surveyed and additional topics such as
uniqueness of polynomials with largest coefficient sums and practical estimation of
IFj(Pn)l are included, to make the paper self-contained. © 1989 Academic Press, Inc.

L INTRODUCTION AND SURVEY OF RESULTS

Let IP n denote the linear space of real polynomials Pn of degree not
exceeding n EN, normed in Chebyshev's sense, i.e.,

IIPnll oo = max IPn(x)l,
XEI

where 1= [-1,1], and let

(1)

(2)

denote the unit ball in iP'n'

A prominent member of Bn is the nth Chebyshev polynomial of the first
kind, Tn = Lk~O t1:n)idk

, which is, simultaneously with n, an even or odd
polynomial; cf. [12]. By id we denote the identical function given by
id(x) =X.

About a hundred years ago, V. Markov obtained sharp estimates for
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each single coefficient of an arbitrary polynomial I"n = Lk=O ak idk
E Bn in

terms of the coefficients of Tn and Tn -1 E Bn,

if j=n (mod 2)

if j=n-l (mod 2)
(3)

(cr., e.g., [5, p. 56]). The integer numbers t5n ) are explicitly known. In this
paper we are concerned with the problem of determining polynomials Pn

from Bn which have largest partial sums of coefficients. Thus we are
interested in the structure of those polynomials which give the norm of the
linear coefficient functionals Fj : IP n --+ JR, where

We shall refer to a P: E Bn as extremal for Fj if liP: 1100 = 1 and

FiP:) = IIFjl1 = sup IFj(Pn)l.
PnEBn

We note in passing that the trivial upper bound IFj(Pn)1 ~U=o lakl,
which can be evaluated via Markov's inequalities (3) yields unreasonable
results; see also Theorem 5 below.

A first step towards the posed problem was made by Reimer and Zeller
[11] during an investigation into the numerical stability of evaluation
schemes for polynomials. They showed in [11, Satz 1] that the partial
coefficient sums of the even resp. odd component (depending on n EN) of
PnE Bn are maximized in absolute value by those of ± Tn.

The same conclusion was established by Rivlin [12, p. 94] with a
different method of proof under the weaker assumption PnE Cn' Here,

and Xk, n denotes the points where Tn attains its extreme values ± 1 on I,

Xk,n = cos((n -k) n/n), k = 0, 1, 2, ..., n. (6)

Notethat Bn is a proper subset of Cn (n ~ 2); note also that the lower index
of summation in [12, Formula (2.38)] should readj=i,

In [8] we gave an alternative proof for this result in a more general set­
ting, and added to it the sharp upper bounds for the partial coefficient
sums of the even resp, odd component of P n E Cn if n is odd resp. even. In
summary we thus have (cf. [8]):
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THEOREM 1. Let Pn= L:k~O ak idk
E Cn' Then

(i) lao + a2+ a4 + ... + ajl ~ It&n) + t&n l + t~n) + ... + tJn l I,
ifn is even andj=.n (mod 2); (7)

(ii) lal+a3+a5+'" +ajl~lt~n)+t~n)+t~n)+... +ttll,
ifn is odd andj=.n (mod 2); (8)

(iii) laO+a2+a4+'" +ajl~IeO+C2+C4+'" +cjl,
ifn isoddandj=.n-1 (mod 2); (9)

(iv) la1 +a3+a5+ ... +ajl ~ leI +C3+C5+ ... +cjl,
if n is even andj=. n -1 (mod 2). (10)

The coefficients ck stem from the Rogosinski polynomial n = nn ~ 1 =
Lk:b Ck idk

E Cn; cf. [13].

Let us now turn to the original problem of determining the elements of
Bn which maximize the unrestricted partial coefficient sums FiPn)' Our
main result (Theorem 3 below) gives insight into the structure of these
extremal polynomials. They are determined by their number d of alter­
nation points on I, and among them are, in particular, the Chebyshev
polynomials (d = n + 1), the Zolotarev polynomials (d = n), and the
Achieser polynomials (d = n - 1). Detailed information on these classical
polynomial families can be found in [1, 3, 4, 12] or [14]. The proof of
Theorem 3 is based on the well-known characterization theorem of best
Chebyshev approximations; cf. [12, Theorem 2.5]. The question of uni­
queness of polynomials with largest coefficient sums is discussed in some
detail in Section 3 below. In the final section of this paper we determine the
extremal polynomials for Fj if 1~ n ~ 4 and provide a practical estimate for
lFiPn)1 if n ~ 5 in terms of Tn. It is in fact a lucky coincidence that in at
least "half' the time, namely if j =. n (mod 2), an extremal polynomial for Fj

is given by the Chebyshev polynomial ± Tn' We have shown this result in
[9]:

and hence in particular

if j=.n(mod2),

if j=.n(mod 2).

(11 )

(12)

2. THE MAIN RESULT

PnEBn is said to alternate on I d times (d~2) if there exist points
ZI < Z2 < ... < Zd from I (alternation points) with the property IPn(zw)1 = 1
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for w= 1,2,..., d and Pn(zw) Pn(zw+d= -1 for w= 1, 2, ..., d- L In what
follows it suffices to assume n ~ 5 (cf. Proposition 5 below). Since lIFo II = 1
(compare inequality (3)) and IlFnll = 1 in virtue of IFn(Pn)1 = IPn(1)I, it is
enough to consider only those functionals FJ with index j E {I, 2, ... , n - 1}.

THEOREM 3. Let P: E Bn , n ~ 5, be extremal for the functional FJ ,

1~j ~ n - 1. Then P: alternates on I d times, where n - 3 ~ d~ n + 1.

Proof Let P: = Lk ~o at idk be extremal for FJ , 1~j ~ n - 1. Put

J

P= L atidk

k=O

and (13 )

This implies F;(p:n = 0 so that

P # K- k I(F) - (1 'dJ'd 'dJ 'dJ- 1 'dJ 'dJ+ 1 'dn )n E - erne J - span - I ,I - I , ..., I - I ,I , ... , I .

(14 )

We claim that P't is a best approximation to PEPn\K from K, i.e.,

IIP-P't 1100 ~ IIP-P~lloo

On the one hand we obtain (with P~ E K)

for all P~EK:

i.e., 1~ liP - P~ II 00 for all P~ E K.
On the other hand we get 1= liP: 1100 = liP - P't 1100'
According to [12, Theorem 2.5] there exist distinct points

Xl <x2< ... <Xr from the set

of critical points of P:, and positive numbers J.1.1, J.1.2, ..., I-lr such that

(15 )

r

L J.1.i P:(XJ P~(xJ= 0
i~1

for all P~EK, (16)

where 1~ r ~ dim(K) + 1= n + 1.
Suppose that r ~ n - 2. We proceed to construct some Qn E K which

violates Eq. (16) so that n -1 ~ r ~ n + 1 holds true. Set

and

r r

R(x)= n (x-x,)= L bkxk

'~I k=O

(17)

(18)
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with unspecified real scalars IX, p, y. Obviously, Qn E ~nand Qn(xJ = P:(xJ
for i= 1, 2, ..., r so that

Furthermore,

r

L /l;P:(xJ Qn(xJ > o.
;=1

(19)

FiQn) = FiP:) + IXFi R ) + PFiid R) + y.Fj(id2 R)

= FiP:) + IXFiR) + PFj_I(R) + yFj_iR), (20)

with F_1(R)=0 and FiP:) >0.

(I) Let r = n - 2. We distinguish several cases concerning the index j .
to show that the scalars IX, P, y can be chosen in such a manner that
Fj(Qn) = 0, i.e., Qn E K.

Case 1. j = 1. Then, F1(Qn) = F1(P:) + IXF1(R) + PFo(R). It is
impossible that F 1(R) = Fo(R) = 0, since then R would have a double root
at x=O. Thus take either IX=O and P= -F1(P:)/Fo(R) or
IX= -F1(P:)/F1(R) and p=O to get F1(Qn)=0.

Case 2. j E {2, 3, ..., n - 2}. It is then impossible that FiR) = Fj _ 1(R) =
Fj _ 2(R) = 0, since in this case the two consecutive coefficients bj and bj _ 1 of
R would vanish although R has only real roots, a contradiction to
Descartes' rule of signs; cf. [7, Satz 13.4]. Hence at least one of the
numbers FiR), Fj _ 1(R), or Fj _ 2(R) is different from zero and it is then
obvious that in Eq. (20) IX, P, and y can be appropriately chosen so as to
yield FiQn) = O.

Case 3. j=n-1. Then, Fn_ l(Qn)=Fn_ I(P:)+IXR(l)+PR(l)+
yFn_ 3(R). If R(l)#O, the choice P=y=O and IX= -Fn_ I(P:)/R(l) gives
Fn-I (Qn) = 0; if R( 1) = 0, then Fn_ 3(R) # 0 since otherwise the leading
coefficient bn - 2 of R (which is in fact 1) would vanish. Thus we may take
IX=P=O and y= -Fn_ I(P:)/Fn_ 3(R) to force Fn_l(Qn)=O.

(II) Let 1~r~n-3. Choosing distinct points YI,Y2, ...,Yn-r-2E
1\{x I' ..., x r } and replacing R(x) in Eq. (17) by

r n-r-2

R(x)= n (x-x,) n (x-yJ
,= 1 u= 1

(21 )

we can proceed as before and eventually get Qn E K if 1~ r ~ n - 2. Thus
there are r critical points of P: on I, where n -1 ~ r ~ n + 1.
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Remarks. (i) It follows from the above considerations that in the
special cases j = 1 and j = n - 1 a contradiction to Eq. (16) can be produced
by assuming r = n - 1 in place of r = n - 2 and putting y = 0 in Eq. (18).
Hence in these two marginal cases one has actually r E {n, n + I} critical
points of P;; on I.

(ii) It is tempting to make the same assumption r = n - 1 and y = 0 in
the cases j E {2, 3, ..., n - 2} as welL But the attempt fails since for these
values of j there exist polynomials R with only real (simple) roots such that

(22)

Knowing that P;; has r E {n - 1, n, n + I} critical points on I we are now
in a position to bound the number d of alternation points of r,; on I:

(A) r=n+1. By [12, Theorem 2.12J we have either P;;= ±Tn or
P;; = ±1 (constant). But IFj ( ±1)1 = 1 is surely smaller than, for example,
lFi ± Tn)1 or lFi ±Tn-I)I so that ± 1 cannot be extremaL Thus P;; = ± Tn
which means that d = n + 1 and the alternation points being the Xk. n from
Eq. (6).

(B) r=n. The first derivative P;;' of P;; vanishes n-2 times at the
interior points x 2 < ... <xn - I since P;;EBn- If there were, induced by
these points, two or more subintervals [xq , X q + 1J with the property
P;;(Xq ) P;;(Xq + 1) = 1, then, by Rolle's Theorem, P;;' would have at least n
roots in I and so P;;' = 0 and P;; = 1, a contradiction.

Therefore there exists at most one subinterval [x q , x q + IJ induced by the
interior points where P;; does not alternate. Suppose first that P;; does not
alternate on the interior interval [x q , x q + IJ so that P;;' has n -1 roots in
I. If we than had, in addition, P;;(xd P;;(X2) = 1 or P;;(xn_ d P;;(xn) = 1,
this would imply that P;;' posseses more than n - 1 roots in I, an
impossibility. Hence P;; must alternate on the boundary intervals [Xl' X 2 ]

and [xn-I,xnJ (with P;;'(xI)#O#P;;'(xn)) giving a total of d=n-l
alternation points.

Suppose next that P;; alternates at all interior points. With regard to the
zeros of P;;' we conclude that either P;; alternates on [Xl' X2] and on
[xn_j,xn] (with Pn*'(xd#O or P;;'(Xn) #0) or P: does not alternate on
exactly one of these boundary intervals (with P;;'(xd#O resp.
P;;'(xn);" 0). This leads to d = n or d = n - 1 alternation points of P:: on I.

(C) r = n - 1. By similar considerations as in (B) we get d = n - 1 or
d = n - 2 or even d = n - 3 alternation points of P;~ on I. The latter case
occurs, for example, if P;; alternates at the interior points X 2 < ... < x" _ 2

but neither on [X I,X2] nor on [X"_2,X,,_I] (with P;;'(xd#O#

P';'(xn-d)· I
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3. UNIQUENESS OF POLYNOMIALS WITH LARGEST COEFFICIENT SUMS

We know from Theorem 2 that SUPPnEBn 1~,(Pn)1 = SUPPnECn lFiPn)1 =
lFi ± Tn)l, provided that j= n (mod 2). Examining the proof in [9] we
observe that the value of Pn at x = xo,n = -1 does not matter. Therefore we
can state a slightly more general version of Korollar 1 in [9] which
includes polynomials Pn satisfying IPn( -1)1 > 1. For convenience, we first
introduce the set

and note that Bnc Cnc Dn.

PROPOSITION 1.

sup lFiPn)1 = lFi ± Tn)l,
PnEDn

if j= n (mod 2). (24)

We now consider the question of uniqueness of polynomials with largest
partial coefficient sums in Dn, Cn, and Bn- From the proof in [9] also
follows that besides ± Tn there are infinitely many elements in Dn (and in
Cn) that attain the sup in Eq. (24).

PROPOSITION 2. Every polynomial 1'nE Dn satisfying either 1'n(Xk, n) =
( _l)n-k or 1'n(xk,n) = -( _l)n- k for k = 1, 2, ,.., n yields

if j= n (mod 2). (25)

EXAMPLE 1. Consider the parameterized polynomial 1's, tEDs (with
parameter t E IR) given by

1's ,(x) = 0,1(1 + t) + (4.9 - OJt) x -1.2(1 + t) x 2 + (1.2t -18.8) x 3

+ 1.6(1 + t) x 4 + 1.6(9 - t) x S
•

It satisfies 1's t( -1) = t, 1's lXk s) = (-1 )S-k for k = 1, 2, 3,4,5, and gives
the same m~ximizing partial 'coefficient sums lFi1's,t)l,jE {1, 3, 5}, as

3 S' ~ ~

±Ts, where Ts(x)=5x-20x +16x (I.e., Ts=Ps,-d. If Itl:::;;l,Ps,t
belongs to C.

However, if we require a maximizing polynomial l'nEDn (or l'nEen) (cr.
Proposition 2) to be an element of Bn we obtain 1'n= ±Tn. This follows
from our next statement.
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PROPOSITION 3. Let PnE Bn, n ~ 2, satisfy Pn(.Xk,n) = (-It- k for
k = 1, 2, ..., n. Then, Pn= Tn"

Proof Consider the polynomial Gn= Pn- Tn· As Gn vanishes at x k, n
(k=1,2, ...,n) we get

and

n

Gn(x)=K1 n (X-Xk,n)
k=l

(K j a constant)

n n

G~(X)=Kl I n (X-Xk,n)'
m~l k~j

k"'m

(26)

Since Pn, Tn E Bn we deduce that G~ vanishes at the interior points xk,n of f
(k= 1, 2, "', n-l) and thus

n-l
G~(X)=K2 n (x-xk,n)

k~l

(K2 a constant). (27)

Equating (26) and (27) we deduce at x = Xn, n= 1 the identity K 1 = K2, and
a comparison of the coefficients of x n- 1 gives K2= nKl' This implies
K 1 = K2= 0 and Pn= Tn" I

Next, we turn to the question of the uniqueness of extremal polynomials
in Bn"

THEOREM 4. The functional F} (1 ~j ~ n - 1; n ~ 5) has a unique
extremal element in Bn.

Proof Reconsider Eq. (16) above and choose for P~ E K the special
polynomial P~=F/Pn)P::-IIF}11Pn, where PnEiPn is arbitrary.
Obviously, P~EK, and, rearranging Eq. (16), we deduce (see also the proof
of Theorem 2.13 in [12]):

r

I fliP::(X;) P~(x;) = 0,
i~l

r r

F)Pn) I fl/ p ::(X;))2 = I fliP::(X;) IIF}II PAx;),
i= 1 i=l

r

F/Pn)= I fliP::(X i) IIF}II fl- 1 Pn(x;),
i~l

r

F/Pn)= I lY.iPn(x;),
i~l

(28)
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where fl = fl1 + fl2 + ... + flr > 0 and (Xi = fliP:(x;)IIFj II fl-1. We know from
the proof of Theorem 3 that in Eq. (28), which is a canonical represen­
tation of Fj in the sense of [12, p. 84], there are r E {n - 1, n, n + 1} terms.
Even if we assume the "worst case" concerning the choice of r, r = n -1,
and the distribution of points xiEI, -1 =X1 <X2< ... <xn- 2<xn- 1= 1,
we obtain uniqueness of the extremal element for Fj since the sufficient con­
dition for the uniqueness as given in [12, Theorem 2.17] is now in force;
this condition reads here, with the notation E(x) = 1, if x = 1 or x = -1,
and E(x) = 2, if - 1 < x < 1:

r n~l

L E(x;) = L E(x;) = 2n - 4 >n,
i~l i~l

provided that n ~ 5. I

The following statement reveals in conjunction with Theorem 3 above
that extremal elements for Fj which have n - 3 :::;; d:::;; n alternation points on
I can occur only if j= n -1 (mod 2).

PROPOSITION 4. The unique extremal element in Bn for Fj (n ~ 5) is

if j=n-4h (h= 1, 2, 3, ... )

if j=n-2-4h (h=O, 1,2, ... ).

(29)

(30)

Proof According to Theorem 2, an extremal element for Fj
(l:::;;j:::;;n-l;j=n(mod2)) is given by Tn or by -Tn. In either case it is
uniquely determined by Theorem 4 if n ~ 5. An analysis of the alternating
signs of Sj = tt) + tj~ 2 + tj~ 4 + ... (cf. Exercise 1.2.19 in [12]) finally
establishes (29) and (30). I

4. PRACTICAL CALCULATION OF PARTIAL COEFFICIENT SUMS

For small values of n (1:::;; n:::;; 4) extremal elements for Fj can be
calculated explicitly; but the calculation is rather lenthy so that we state the
results without proof.

PROPOSITION 5. If n E {I, 2, 3,4} then either ± Tn or ± Tn -1 are
extremal for Fj (O:::;;j:::;; n), except in the following three instances:

(a) n=2 and j= 1. An extremal polynomial is given by Pf(x)=
(7 + 8x- 8x2)/9 and one gets F1(pn = IIF1 11 = 15/9= 1.66666.... (31)

(b) n = 3 and j = 2. An extremal polynomial is given by the (improper)

Zolotarev polynomial Pt(x) = -T3(((8 + .)22) x - 6 + .)22)/14) =
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-(270 - 17 j22)/686 + ((576 + 261 j22)/686) x + ((246 + 15 J22)1
343) x 2- ((520 + 107 j22)/343) x 3 and one gets

F 2(Pt) = IIF2 11 = (57 + 22 j22)/49 = 1.26916.... (32)

(c) n = 4 and j = 1. An extremal polynomial is given by the (proper)

Zolotarev polynomial with parameter t, 1 < t < 1 +fl,
Z4 lx) = ao(t) + a 1(t) x + a2(t) x 2+ a3(t) x 3 + a4 (t) x 4

,

where

ao(t) = Ka, b( _a5 + a4
( - 2 + 3b) + a3

( -1 + 6b - 3b2
)

+ a2(3b + 2b2+ b3
) + a(3b2- 2b3

) - b3
)

a 1(t) = Ka, b(a2( -16b + 8b2) + a( -12b + 8b2- 4b3
))

a2(t) = Ka b(a2(8 -16b) + a(6 -4b + 2b2) +6b- 4b2+ 2b 3
)

a3(t) = K a, b(8a2+ 8ab + 8b - 4b2- 4)

a4(t) = Ka, b( -,--6a + 2b - 4)

and

with

a = a(t) = (1 - 3t - t2- t 3 )/(1 + t)3,

b = b(t) = (1 + t + 3t2- t3)/(1 + t)3.

One finds IIZ4, t II 00 = 1 and that Z4, t alternates on I at -1 < a < b < 1:

The (parameterized) value F 1(Z4, t) = ao(t) + a 1(t) is largest, as differen­
tiation with respect to t shows, if we choose for t the unique positive root of
the algebraic equation of degree 14,

0=3 + 16t + t2+ 64t3 + 47t4+ 96t5 + 181t6 + 64t7

+ 89t8 + }6t9
- 45t10

- 11t l2 - 9t14
,

i.e., t = t* = 1.52539..., which yields

(33 )
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Given an arbitrary n E N it is not possible to determine the coefficients of
r:: in explicit power form so that numerical methods have to be applied.
However, combining V. Markov's inequalities (3) with Theorem 2, we
obtain a convenient bound for the partial coefficient sums of Pn E Bn- This
bound is sharp if j== n(mod 2) and improves Satz 2 in [11]:

if j== n (mod 2)
if j== n -1 (mod 2).

(34)

and

we obtain the inequalities

laol ~ 1, lao+atl ~8, lao+at +a21 ~31, lao+ +a3 1~87,

lao + ... + a4 1~ 129, lao + ... + as I~ 241, lao + + a61 ~ 127,

lao+ ... +a7 1~ 191, lao+ ... +agl ~ 1.

5. CLOSING REMARKS

(i) The case n = 4, j = 3 in Proposition 5 reveals that a Chebyshev
polynomial can be extremal for Fj even if j == n - 1 (mod 2).

(ii) The statement and proof of Theorem 3 can be easily carried over
to the coefficient functional Hj given by HiPn) = aj + aj + t + ... + an'
which describes the backward partial sums or Horner sums; cr. [10].

(iii) The problem of maximizing the coefficient sums of a complex
polynomial is dealt with in [6].

(iv) Interesting results on the coefficient sums of the Rudin-Shapiro
polynomials can be found in [12, p. 128; 2].

REFERENCES

1. N. I. ACHIESER, "Theory of Approximation," Ungar, New York, 1965.
2. J. BRtLLHART, P. ERDOS, AND P. MORTON, On sums of Rudin-Shapiro coefficients II,

Pacific J. Math. 107 (1983), 39-69.



LARGEST COEFFICIENT SUMS 359

3. B. C. CARLSON AND J. TODD, Zolotarev's first problem-The best approximation by
polynomials of degree ~n-2 to xn_nrrxn- 1 in [-1,1], Aequationes Math. 26 (1983),
1-33.

4. N. N. MElMAN, Polynomials deviating least from zero with an arbitrary number of given
coefficients, Soviet Math. Dokl. 1 (1960), 72-75.

5. I. P. NATANSON, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
6. D. J. NEWMAN, Polynomials with large partial sums, J. Approx. Theory 23 (1978),

187-190.
7. N. OBRESCHKOFF, "Verteilung und Berechnung der Nullstellen reeller Polynome,"

Deutscher Verlag der Wissenschaften, Berlin, 1963.
8. H.-J. RACK, Further extremal properties of the Rogosinski polynomials, Glas. Mat. Ser.

III 19 (1984), 245-253.
9. H.-J. RACK, Abschatzung der Teilsummen reeller Polynome, Math. Z. 182 (1983),

549-552.
10. M. REIMER, Bounds for the Horner sums, SIAM J. Numer. Anal. 5 (1968),461-469.
11. M. REIMER AND K. ZELLER, Abschatzung der Teilsummen reeller Polynome, Math. Z. 99

(1967), 101-104.
12. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley, New York, 1974.
13. W. ROGOSINSKl, Some elementary inequalities for polynomials, Math. Gaz. 39 (1955),

7-12.
14. E. V. VORONOVSKAJA, "The Functional Method and Its Applications," Translations of

Mathematical Monographs, Vol. 28, Amer. Math. Soc., Providence, RI, 1970.

640/56/3-9


