On Polynomials with Largest Coefficient Sums

Heinz-Joachim Rack
Siemens AG RZN, WA-SD, Postfach 1033 63, D-4300 Essen 1, West Germany
Communicated by Oved Shisha

Received September 13, 1984; revised September 29, 1987

Abstract

Let F, denote the linear functional that assigns to a real polynomial $P_{n}(x)=$ $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ its j th partial coefficient sum $F_{j}\left(P_{n}\right)=a_{0}+a_{1}+a_{2}+$ $\cdots+a_{j}(1 \leqslant j \leqslant n-1 ; n \geqslant 5)$. It is demonstrated that a polynomial P_{n}^{*} which is extremal for F_{j} (i.e., $\left\|P_{n}^{*}\right\|_{\infty}=1$ (uniform norm on $I=[-1,1]$) and $F_{j}\left(P_{n}^{*}\right)=\left\|F_{j}\right\|$) must have d alternation points on I, where $n-3 \leqslant d \leqslant n+1$. This result complements the author's previous one [Math. Z. 182 (1983), 549-552] stating that about "hall" the time, namely, if $j \equiv n(\bmod 2)$, the nth Chebyshev polynomial of the first kind, $\pm T_{n}$, which posseses $d=n+1$ alternation points on I, is extremal for F_{j}. Known results on this subject are surveyed and additional topics such as uniqueness of polynomials with largest coefficient sums and practical estimation of $\left|F_{j}\left(P_{n}\right)\right|$ are included, to make the paper self-contained. © 1989 Academic Press, Inc.

1. Introduction and Survey of Results

Let \mathbb{P}_{n} denote the linear space of real polynomials P_{n} of degree not exceeding $n \in \mathbb{N}$, normed in Chebyshev's sense, i.e.,

$$
\begin{equation*}
\left\|P_{n}\right\|_{\infty}=\max _{x \in I}\left|P_{n}(x)\right| \tag{1}
\end{equation*}
$$

where $I=[-1,1]$, and let

$$
\begin{equation*}
B_{n}=\left\{P_{n} \in \mathbb{P}_{n}:\left\|P_{n}\right\|_{\infty} \leqslant 1\right\} \tag{2}
\end{equation*}
$$

denote the unit ball in \mathbb{P}_{n}.
A prominent member of B_{n} is the nth Chebyshev polynomial of the first kind, $T_{n}=\sum_{k=0}^{n} t_{k}^{(n)} \mathrm{id}^{k}$, which is, simultaneously with n, an even or odd polynomial; cf. [12]. By id we denote the identical function given by $\operatorname{id}(x)=x$.

About a hundred years ago, V. Markov obtained sharp estimates for 348
each single coefficient of an arbitrary polynomial $P_{n}=\sum_{k=0}^{n} a_{k} \mathrm{id}^{k} \in B_{n}$ in terms of the coefficients of T_{n} and $T_{n-1} \in B_{n}$,

$$
\left|a_{j}\right| \leqslant \begin{cases}\left|t_{j}^{(n)}\right|, & \text { if } j \equiv n(\bmod 2) \tag{3}\\ \left|t_{j}^{(n-1)}\right|, & \text { if } j \equiv n-1(\bmod 2)\end{cases}
$$

(cf., e.g., [5, p. 56]). The integer numbers $t_{j}^{(n)}$ are explicitly known. In this paper we are concerned with the problem of determining polynomials P_{n} from B_{n} which have largest partial sums of coefficients. Thus we are interested in the structure of those polynomials which give the norm of the linear coefficient functionals $F_{j}: \mathbb{P}_{n} \rightarrow \mathbb{R}$, where

$$
\begin{equation*}
F_{j}\left(P_{n}\right)=a_{0}+a_{1}+a_{2}+\cdots+a_{j} \quad\left(0 \leqslant j \leqslant n ; P_{n}=\sum_{k=0}^{n} a_{k} \mathrm{id}^{k}\right) . \tag{4}
\end{equation*}
$$

We shall refer to a $P_{n}^{*} \in B_{n}$ as extremal for F_{j} if $\left\|P_{n}^{*}\right\|_{\infty}=1$ and

$$
F_{j}\left(P_{n}^{*}\right)=\left\|F_{j}\right\|=\sup _{P_{n} \in B_{n}}\left|F_{j}\left(P_{n}\right)\right| .
$$

We note in passing that the trivial upper bound $\left|F_{j}\left(P_{n}\right)\right| \leqslant \sum_{k=0}^{j}\left|a_{k}\right|$, which can be evaluated via Markov's inequalities (3) yields unreasonable results; see also Theorem 5 below.

A first step towards the posed problem was made by Reimer and Zeller [11] during an investigation into the numerical stability of evaluation schemes for polynomials. They showed in [11, Satz 1] that the partial coefficient sums of the even resp. odd component (depending on $n \in \mathbb{N}$) of $P_{n} \in B_{n}$ are maximized in absolute value by those of $\pm T_{n}$.

The same conclusion was established by Rivlin [12, p. 94] with a different method of proof under the weaker assumption $P_{n} \in C_{n}$. Here,

$$
\begin{equation*}
C_{n}=\left\{P_{n} \in \mathbb{P}_{n}:\left|P_{n}\left(\hat{x}_{k, n}\right)\right| \leqslant 1 \text { for } k=0,1,2, \ldots, n\right\} \tag{5}
\end{equation*}
$$

and $\hat{x}_{k, n}$ denotes the points where T_{n} attains its extreme values ± 1 on I,

$$
\begin{equation*}
\hat{x}_{k, n}=\cos ((n-k) \pi / n), \quad k=0,1,2, \ldots, n . \tag{6}
\end{equation*}
$$

Note that B_{n} is a proper subset of $C_{n}(n \geqslant 2)$; note also that the lower index of summation in [12, Formula (2.38)] should read $j=i$.
In [8] we gave an alternative proof for this result in a more general setting, and added to it the sharp upper bounds for the partial coefficient sums of the even resp. odd component of $P_{n} \in C_{n}$ if n is odd resp. even. In summary we thus have (cf. [8]):

Theorem 1. Let $P_{n}=\sum_{k=0}^{n} a_{k} \mathrm{id}^{k} \in C_{n}$. Then
(i) $\left|a_{0}+a_{2}+a_{4}+\cdots+a_{j}\right| \leqslant\left|t_{0}^{(n)}+t_{2}^{(n)}+t_{4}^{(n)}+\cdots+t_{j}^{(n)}\right|$, if n is even and $j \equiv n(\bmod 2)$;
(ii) $\left|a_{1}+a_{3}+a_{5}+\cdots+a_{j}\right| \leqslant\left|t_{1}^{(n)}+t_{3}^{(n)}+t_{5}^{(n)}+\cdots+t_{j}^{(n)}\right|$,
if n is odd and $j \equiv n(\bmod 2)$;
(iii) $\left|a_{0}+a_{2}+a_{4}+\cdots+a_{j}\right| \leqslant\left|c_{0}+c_{2}+c_{4}+\cdots+c_{j}\right|$, if n is odd and $j \equiv n-1(\bmod 2)$;
(iv) $\left|a_{1}+a_{3}+a_{5}+\cdots+a_{j}\right| \leqslant\left|c_{1}+c_{3}+c_{5}+\cdots+c_{j}\right|$, if n is even and $j \equiv n-1(\bmod 2)$.

The coefficients c_{k} stem from the Rogosinski polynomial $\Pi=\prod_{n-1}=$ $\sum_{k=0}^{n-1} c_{k} \mathrm{id}^{k} \in C_{n}$; cf. [13].

Let us now turn to the original problem of determining the elements of B_{n} which maximize the unrestricted partial coefficient sums $F_{j}\left(P_{n}\right)$. Our main result (Theorem 3 below) gives insight into the structure of these extremal polynomials. They are determined by their number d of alternation points on I, and among them are, in particular, the Chebyshev polynomials $(d=n+1)$, the Zolotarev polynomials $(d=n)$, and the Achieser polynomials $(d=n-1)$. Detailed information on these classical polynomial families can be found in [1,3,4, 12] or [14]. The proof of Theorem 3 is based on the well-known characterization theorem of best Chebyshev approximations; cf. [12, Theorem 2.5]. The question of uniqueness of polynomials with largest coefficient sums is discussed in some detail in Section 3 below. In the final section of this paper we determine the extremal polynomials for F_{j} if $1 \leqslant n \leqslant 4$ and provide a practical estimate for $\left|F_{j}\left(P_{n}\right)\right|$ if $n \geqslant 5$ in terms of T_{n}. It is in fact a lucky coincidence that in at least "half" the time, namely if $j \equiv n(\bmod 2)$, an extremal polynomial for F_{j} is given by the Chebyshev polynomial $\pm T_{n}$. We have shown this result in [9]:

Theorem 2. Let $P_{n}=\sum_{k=0}^{n} a_{k} \mathrm{id}^{k}$ and let $P_{n} \in B_{n}$ or $P_{n} \in C_{n}$. Then

$$
\begin{equation*}
\left|F_{j}\left(P_{n}\right)\right| \leqslant\left|F_{j}\left(\pm T_{n}\right)\right|, \quad \text { if } j \equiv n(\bmod 2) \tag{11}
\end{equation*}
$$

and hence in particular

$$
\begin{equation*}
\left\|F_{j}\right\|=\left|F_{j}\left(\pm T_{n}\right)\right|, \quad \text { if } j \equiv n(\bmod 2) \tag{12}
\end{equation*}
$$

2. The Main Result

$P_{n} \in B_{n}$ is said to alternate on $I d$ times $(d \geqslant 2)$ if there exist points $z_{1}<z_{2}<\cdots<z_{d}$ from I (alternation points) with the property $\left|P_{n}\left(z_{w}\right)\right|=1$
for $w=1,2, \ldots, d$ and $P_{n}\left(z_{w}\right) P_{n}\left(z_{w+1}\right)=-1$ for $w=1,2, \ldots, d-1$. In what follows it suffices to assume $n \geqslant 5$ (cf. Proposition 5 below). Since $\left\|F_{0}\right\|=1$ (compare inequality (3)) and $\left\|F_{n}\right\|=1$ in virtue of $\left|F_{n}\left(P_{n}\right)\right|=\left|P_{n}(1)\right|$, it is enough to consider only those functionals F_{j} with index $j \in\{1,2, \ldots, n-1\}$.

Theorem 3. Let $P_{n}^{*} \in B_{n}, n \geqslant 5$, be extremal for the functional F_{j}, $1 \leqslant j \leqslant n-1$. Then P_{n}^{*} alternates on I d times, where $n-3 \leqslant d \leqslant n+1$.

Proof. Let $P_{n}^{*}=\sum_{k=0}^{n} a_{k}^{*} \mathrm{id}^{k}$ be extremal for $F_{j}, 1 \leqslant j \leqslant n-1$. Put

$$
\begin{equation*}
P=\sum_{k=0}^{j} a_{k}^{*} \mathrm{id}^{k} \quad \text { and } \quad P_{n}^{\#}=P-P_{n}^{*} \tag{13}
\end{equation*}
$$

This implies $F_{j}\left(P_{n}^{\#}\right)=0$ so that

$$
\begin{equation*}
P_{n}^{\#} \in K=\operatorname{kernel}\left(F_{j}\right)=\operatorname{span}\left(1-\mathrm{id}^{j}, \mathrm{id}-\mathrm{id}^{j}, \ldots, \mathrm{id}^{j-1}-\mathrm{id}^{j}, \mathrm{id}^{j+1}, \ldots, \mathrm{id}^{n}\right) \tag{14}
\end{equation*}
$$

We claim that $P_{n}^{\#}$ is a best approximation to $P \in \mathbb{P}_{n} \backslash K$ from K, i.e.,

$$
\left\|P-P_{n}^{\#}\right\|_{\infty} \leqslant\left\|P-P_{n}^{0}\right\|_{\infty} \quad \text { for all } \quad P_{n}^{0} \in K
$$

On the one hand we obtain (with $P_{n}^{0} \in K$)

$$
\left\|F_{j}\right\|=\left|F_{j}(P)\right|=\left|F_{j}(P)-F_{j}\left(P_{n}^{0}\right)\right|=\left|F_{j}\left(P-P_{n}^{0}\right)\right| \leqslant\left\|F_{j}\right\|\left\|P-P_{n}^{0}\right\|_{\infty},
$$

i.e., $1 \leqslant\left\|P-P_{n}^{0}\right\|_{\infty}$ for all $P_{n}^{0} \in K$.

On the other hand we get $1=\left\|P_{n}^{*}\right\|_{\infty}=\left\|P-P_{n}^{\#}\right\|_{\infty}$.
According to [12, Theorem 2.5] there exist distinct points $x_{1}<x_{2}<\cdots<x_{r}$ from the set

$$
\begin{equation*}
E\left(P_{n}^{*} ; I\right)=\left\{x \in I:\left|P_{n}^{*}(x)\right|=1\right\} \tag{15}
\end{equation*}
$$

of critical points of P_{n}^{*}, and positive numbers $\mu_{1}, \mu_{2}, \ldots, \mu_{r}$ such that

$$
\begin{equation*}
\sum_{i=1}^{r} \mu_{i} P_{n}^{*}\left(x_{i}\right) P_{n}^{0}\left(x_{i}\right)=0 \quad \text { for all } \quad P_{n}^{0} \in K \tag{16}
\end{equation*}
$$

where $1 \leqslant r \leqslant \operatorname{dim}(K)+1=n+1$.
Suppose that $r \leqslant n-2$. We proceed to construct some $Q_{n} \in K$ which violates Eq. (16) so that $n-1 \leqslant r \leqslant n+1$ holds true. Set

$$
\begin{equation*}
R(x)=\prod_{l=1}^{r}\left(x-x_{l}\right)=\sum_{k=0}^{r} b_{k} x^{k} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}(x)=P_{n}^{*}(x)+\left(\alpha+\beta x+\gamma x^{2}\right) R(x) \tag{18}
\end{equation*}
$$

with unspecified real scalars α, β, γ. Obviously, $Q_{n} \in \mathbb{P}_{n}$ and $Q_{n}\left(x_{i}\right)=P_{n}^{*}\left(x_{i}\right)$ for $i=1,2, \ldots, r$ so that

$$
\begin{equation*}
\sum_{i=1}^{r} \mu_{i} P_{n}^{*}\left(x_{i}\right) Q_{n}\left(x_{i}\right)>0 \tag{19}
\end{equation*}
$$

Furthermore,

$$
\begin{align*}
F_{j}\left(Q_{n}\right) & =F_{j}\left(P_{n}^{*}\right)+\alpha F_{j}(R)+\beta F_{j}(\mathrm{id} R)+\gamma F_{j}\left(\mathrm{id}^{2} R\right) \\
& =F_{j}\left(P_{n}^{*}\right)+\alpha F_{j}(R)+\beta F_{j-1}(R)+\gamma F_{j-2}(R) \tag{20}
\end{align*}
$$

with $F_{-1}(R)=0$ and $F_{j}\left(P_{n}^{*}\right)>0$.
(I) Let $r=n-2$. We distinguish several cases concerning the index j. to show that the scalars α, β, γ can be chosen in such a manner that $F_{j}\left(Q_{n}\right)=0$, i.e., $Q_{n} \in K$.

Case 1. $j=1$. Then, $F_{1}\left(Q_{n}\right)=F_{1}\left(P_{n}^{*}\right)+\alpha F_{1}(R)+\beta F_{0}(R)$. It is impossible that $F_{1}(R)=F_{0}(R)=0$, since then R would have a double root at $\quad x=0$. Thus take either $\alpha=0$ and $\beta=-F_{1}\left(P_{n}^{*}\right) / F_{0}(R)$ or $\alpha=-F_{1}\left(P_{n}^{*}\right) / F_{1}(R)$ and $\beta=0$ to get $F_{1}\left(Q_{n}\right)=0$.

Case 2. $j \in\{2,3, \ldots, n-2\}$. It is then impossible that $F_{j}(R)=F_{j-1}(R)=$ $F_{j-2}(R)=0$, since in this case the two consecutive coefficients b_{j} and b_{j-1} of R would vanish although R has only real roots, a contradiction to Descartes' rule of signs; cf. [7, Satz 13.4]. Hence at least one of the numbers $F_{j}(R), F_{j-1}(R)$, or $F_{j-2}(R)$ is different from zero and it is then obvious that in Eq. (20) α, β, and γ can be appropriately chosen so as to yield $F_{j}\left(Q_{n}\right)=0$.

Case 3. $j=n-1$. Then, $\quad F_{n-1}\left(Q_{n}\right)=F_{n-1}\left(P_{n}^{*}\right)+\alpha R(1)+\beta R(1)+$ $\gamma F_{n-3}(R)$. If $R(1) \neq 0$, the choice $\beta=\gamma=0$ and $\alpha=-F_{n-1}\left(P_{n}^{*}\right) / R(1)$ gives $F_{n-1}\left(Q_{n}\right)=0$; if $R(1)=0$, then $F_{n-3}(R) \neq 0$ since otherwise the leading coefficient b_{n-2} of R (which is in fact 1) would vanish. Thus we may take $\alpha=\beta=0$ and $\gamma=-F_{n-1}\left(P_{n}^{*}\right) / F_{n-3}(R)$ to force $F_{n-1}\left(Q_{n}\right)=0$.
(II) Let $1 \leqslant r \leqslant n-3$. Choosing distinct points $y_{1}, y_{2}, \ldots, y_{n-r-2} \in$ $\Lambda\left\{x_{1}, \ldots, x_{r}\right\}$ and replacing $R(x)$ in Eq. (17) by

$$
\begin{equation*}
\tilde{R}(x)=\prod_{l=1}^{r}\left(x-x_{l}\right) \prod_{u=1}^{n-r-2}\left(x-y_{u}\right) \tag{21}
\end{equation*}
$$

we can proceed as before and eventually get $Q_{n} \in K$ if $1 \leqslant r \leqslant n-2$. Thus there are r critical points of P_{n}^{*} on I, where $n-1 \leqslant r \leqslant n+1$.

Remarks. (i) It follows from the above considerations that in the special cases $j=1$ and $j=n-1$ a contradiction to Eq. (16) can be produced by assuming $r=n-1$ in place of $r=n-2$ and putting $\gamma=0$ in Eq. (18). Hence in these two marginal cases one has actually $r \in\{n, n+1\}$ critical points of P_{n}^{*} on I.
(ii) It is tempting to make the same assumption $r=n-1$ and $\gamma=0$ in the cases $j \in\{2,3, \ldots, n-2\}$ as well. But the attempt fails since for these values of j there exist polynomials R with only real (simple) roots such that

$$
\begin{equation*}
F_{j}(R)=F_{j-1}(R)=0 . \tag{22}
\end{equation*}
$$

Knowing that P_{n}^{*} has $r \in\{n-1, n, n+1\}$ critical points on I we are now in a position to bound the number d of alternation points of P_{n}^{*} on I :
(A) $r=n+1$. By [12, Theorem 2.12] we have either $P_{n}^{*}= \pm T_{n}$ or $P_{n}^{*}= \pm 1$ (constant). But $\left|F_{j}(\pm 1)\right|=1$ is surely smaller than, for example, $\left|F_{j}\left(\pm T_{n}\right)\right|$ or $\left|F_{j}\left(\pm T_{n-1}\right)\right|$ so that ± 1 cannot be extremal. Thus $P_{n}^{*}= \pm T_{n}$ which means that $d=n+1$ and the alternation points being the $\hat{x}_{k, n}$ from Eq. (6).
(B) $r=n$. The first derivative $P_{n}^{* \prime}$ of P_{n}^{*} vanishes $n-2$ times at the interior points $x_{2}<\cdots<x_{n-1}$ since $P_{n}^{*} \in B_{n}$. If there were, induced by these points, two or more subintervals $\left[x_{q}, x_{q+1}\right.$] with the property $P_{n}^{*}\left(x_{q}\right) P_{n}^{*}\left(x_{q+1}\right)=1$, then, by Rolle's Theorem, $P_{n}^{* \prime}$ would have at least n roots in I and so $P_{n}^{* \prime}=0$ and $P_{n}^{*}=1$, a contradiction.

Therefore there exists at most one subinterval $\left[x_{q}, x_{q+1}\right]$ induced by the interior points where P_{n}^{*} does not alternate. Suppose first that P_{n}^{*} does not alternate on the interior interval $\left[x_{q}, x_{q+1}\right]$ so that $P_{n}^{* \prime}$ has $n-1$ roots in I. If we than had, in addition, $P_{n}^{*}\left(x_{1}\right) P_{n}^{*}\left(x_{2}\right)=1$ or $P_{n}^{*}\left(x_{n-1}\right) P_{n}^{*}\left(x_{n}\right)=1$, this would imply that $P_{n}^{* \prime}$ posseses more than $n-1$ roots in I, an impossibility. Hence P_{n}^{*} must alternate on the boundary intervals $\left[x_{1}, x_{2}\right.$] and $\left[x_{n-1}, x_{n}\right]$ (with $P_{n}^{* \prime}\left(x_{1}\right) \neq 0 \neq P_{n}^{* \prime}\left(x_{n}\right)$) giving a total of $d=n-1$ alternation points.

Suppose next that P_{n}^{*} alternates at all interior points. With regard to the zeros of $P_{n}^{* \prime}$ we conclude that either P_{n}^{*} alternates on $\left[x_{1}, x_{2}\right]$ and on $\left[x_{n-1}, x_{n}\right]$ (with $P_{n}{ }^{* \prime}\left(x_{1}\right) \neq 0$ or $P_{n}^{* \prime}\left(x_{n}\right) \neq 0$) or P_{n}^{*} does not alternate on exactly one of these boundary intervals (with $P_{n}^{* \prime}\left(x_{1}\right) \neq 0$ resp. $P_{n}^{* \prime}\left(x_{n}\right) \neq 0$). This leads to $d=n$ or $d=n-1$ alternation points of P_{n}^{*} on I.
(C) $r=n-1$. By similar considerations as in (B) we get $d=n-1$ or $d=n-2$ or even $d=n-3$ alternation points of P_{n}^{*} on I. The latter case occurs, for example, if P_{n}^{*} alternates at the interior points $x_{2}<\cdots<x_{n-2}$ but neither on $\left[x_{1}, x_{2}\right]$ nor on $\left[x_{n-2}, x_{n-1}\right]$ (with $P_{n}^{* \prime}\left(x_{1}\right) \neq 0 \neq$ $P_{n}^{* \prime}\left(x_{n-1}\right)$).

3. Uniqueness of Polynomials with Largest Coefficient Sums

We know from Theorem 2 that $\sup _{P_{n} \in B_{n}}\left|F_{j}\left(P_{n}\right)\right|=\sup _{P_{n} \in C_{n}}\left|F_{j}\left(P_{n}\right)\right|=$ $\left|F_{j}\left(\pm T_{n}\right)\right|$, provided that $j \equiv n(\bmod 2)$. Examining the proof in [9] we observe that the value of P_{n} at $x=\hat{x}_{0, n}=-1$ does not matter. Therefore we can state a slightly more general version of Korollar 1 in [9] which includes polynomials P_{n} satisfying $\left|P_{n}(-1)\right|>1$. For convenience, we first introduce the set

$$
\begin{equation*}
D_{n}=\left\{P_{n} \in \mathbb{P}_{n}:\left|P_{n}\left(\hat{x}_{k, n}\right)\right| \leqslant 1 \text { for } k=1,2, \ldots, n\right\} \tag{23}
\end{equation*}
$$

and note that $B_{n} \subset C_{n} \subset D_{n}$.
Proposition 1.

$$
\begin{equation*}
\sup _{P_{n} \in D_{n}}\left|F_{j}\left(P_{n}\right)\right|=\left|F_{j}\left(\pm T_{n}\right)\right|, \quad \text { if } j \equiv n(\bmod 2) \tag{24}
\end{equation*}
$$

We now consider the question of uniqueness of polynomials with largest partial coefficient sums in D_{n}, C_{n}, and B_{n}. From the proof in [9] also follows that besides $\pm T_{n}$ there are infinitely many elements in D_{n} (and in C_{n}) that attain the sup in Eq. (24).

Proposition 2. Every polynomial $\hat{P}_{n} \in D_{n}$ satisfying either $\hat{P}_{n}\left(\hat{x}_{k, n}\right)=$ $(-1)^{n-k}$ or $\hat{P}_{n}\left(\hat{x}_{k, n}\right)=-(-1)^{n-k}$ for $k=1,2, \ldots, n$ yields

$$
\begin{equation*}
\sup _{P_{n} \in D_{n}}\left|F_{j}\left(P_{n}\right)\right|=\left|F_{j}\left(\hat{P}_{n}\right)\right|, \quad \text { if } j \equiv n(\bmod 2) . \tag{25}
\end{equation*}
$$

Example 1. Consider the parameterized polynomial $\hat{P}_{5,1} \in D_{5}$ (with parameter $t \in \mathbb{R}$) given by

$$
\begin{aligned}
\hat{P}_{5, t}(x)= & 0.1(1+t)+(4.9-0.1 t) x-1.2(1+t) x^{2}+(1.2 t-18.8) x^{3} \\
& +1.6(1+t) x^{4}+1.6(9-t) x^{5} .
\end{aligned}
$$

It satisfies $\hat{P}_{5, t}(-1)=t, \hat{P}_{5, t}\left(\hat{x}_{k, 5}\right)=(-1)^{5-k}$ for $k=1,2,3,4,5$, and gives the same maximizing partial coefficient sums $\left|F_{j}\left(\hat{P}_{5, t}\right)\right|, j \in\{1,3,5\}$, as $\pm T_{5}$, where $T_{5}(x)=5 x-20 x^{3}+16 x^{5}$ (i.e., $T_{5}=\hat{P}_{5,-1}$). If $|t| \leqslant 1, \hat{P}_{5, t}$ belongs to C_{n}.

However, if we require a maximizing polynomial $\hat{P}_{n} \in D_{n}$ (or $\hat{P}_{n} \in C_{n}$) (cf. Proposition 2) to be an element of B_{n} we obtain $\hat{P}_{n}= \pm T_{n}$. This follows from our next statement.

Proposition 3. Let $P_{n} \in B_{n}, n \geqslant 2$, satisfy $P_{n}\left(\hat{x}_{k, n}\right)=(-1)^{n-k}$ for $k=1,2, \ldots, n$. Then, $P_{n}=T_{n}$.

Proof. Consider the polynomial $G_{n}=P_{n}-T_{n}$. As G_{n} vanishes at $\hat{x}_{k, n}$ ($k=1,2, \ldots, n$) we get

$$
G_{n}(x)=K_{1} \prod_{k=1}^{n}\left(x-\hat{x}_{k, n}\right) \quad\left(K_{1} \text { a constant }\right)
$$

and

$$
\begin{equation*}
G_{n}^{\prime}(x)=K_{1} \sum_{m=1}^{n} \prod_{\substack{k=1 \\ k \neq m}}^{n}\left(x-\hat{x}_{k, n}\right) \tag{26}
\end{equation*}
$$

Since $P_{n}, T_{n} \in B_{n}$ we deduce that G_{n}^{\prime} vanishes at the interior points $\hat{x}_{k, n}$ of I ($k=1,2, \ldots, n-1$) and thus

$$
\begin{equation*}
G_{n}^{\prime}(x)=K_{2} \prod_{k=1}^{n-1}\left(x-\hat{x}_{k, n}\right) \quad\left(K_{2} \text { a constant }\right) \tag{27}
\end{equation*}
$$

Equating (26) and (27) we deduce at $x=\hat{x}_{n, n}=1$ the identity $K_{1}=K_{2}$, and a comparison of the coefficients of x^{n-1} gives $K_{2}=n K_{1}$. This implies $K_{1}=K_{2}=0$ and $P_{n}=T_{n}$.

Next, we turn to the question of the uniqueness of extremal polynomials in B_{n}.

Theorem 4. The functional $F_{j}(1 \leqslant j \leqslant n-1 ; n \geqslant 5)$ has a unique extremal element in B_{n}.

Proof. Reconsider Eq. (16) above and choose for $P_{n}^{0} \in K$ the special polynomial $\bar{P}_{n}^{0}=F_{j}\left(P_{n}\right) P_{n}^{*}-\left\|F_{j}\right\| P_{n}$, where $P_{n} \in \mathbb{P}_{n}$ is arbitrary. Obviously, $\bar{P}_{n}^{0} \in K$, and, rearranging Eq. (16), we deduce (see also the proof of Theorem 2.13 in [12]):

$$
\begin{align*}
\sum_{i=1}^{r} \mu_{i} P_{n}^{*}\left(x_{i}\right) \bar{P}_{n}^{0}\left(x_{i}\right) & =0, \\
F_{j}\left(P_{n}\right) \sum_{i=1}^{r} \mu_{i}\left(P_{n}^{*}\left(x_{i}\right)\right)^{2} & =\sum_{i=1}^{r} \mu_{i} P_{n}^{*}\left(x_{i}\right)\left\|F_{j}\right\| P_{n}\left(x_{i}\right), \\
F_{j}\left(P_{n}\right) & =\sum_{i=1}^{r} \mu_{i} P_{n}^{*}\left(x_{i}\right)\left\|F_{j}\right\| \mu^{-1} P_{n}\left(x_{i}\right), \\
F_{j}\left(P_{n}\right) & =\sum_{i=1}^{r} \alpha_{i} P_{n}\left(x_{i}\right), \tag{28}
\end{align*}
$$

where $\mu=\mu_{1}+\mu_{2}+\cdots+\mu_{r}>0$ and $\alpha_{i}=\mu_{i} P_{n}^{*}\left(x_{i}\right)\left\|F_{j}\right\| \mu^{-1}$. We know from the proof of Theorem 3 that in Eq. (28), which is a canonical representation of F_{j} in the sense of [12, p. 84], there are $r \in\{n-1, n, n+1\}$ terms. Even if we assume the "worst case" concerning the choice of $r, r=n-1$, and the distribution of points $x_{i} \in I,-1=x_{1}<x_{2}<\cdots<x_{n-2}<x_{n-1}=1$, we obtain uniqueness of the extremal element for F_{j} since the sufficient condition for the uniqueness as given in [12, Theorem 2.17] is now in force; this condition reads here, with the notation $E(x)=1$, if $x=1$ or $x=-1$, and $E(x)=2$, if $-1<x<1$:

$$
\sum_{i=1}^{r} E\left(x_{i}\right)=\sum_{i=1}^{n-1} E\left(x_{i}\right)=2 n-4>n, \quad \text { provided that } \quad n \geqslant 5
$$

The following statement reveals in conjunction with Theorem 3 above that extremal elements for F_{j} which have $n-3 \leqslant d \leqslant n$ alternation points on I can occur only if $j \equiv n-1(\bmod 2)$.

Proposition 4. The unique extremal element in B_{n} for $F_{j}(n \geqslant 5)$ is

$$
\begin{align*}
T_{n}, & \text { if } j=n-4 h(h=1,2,3, \ldots) \tag{29}\\
-T_{n}, & \text { if } j=n-2-4 h(h=0,1,2, \ldots) \tag{30}
\end{align*}
$$

Proof. According to Theorem 2, an extremal element for F_{j} $(1 \leqslant j \leqslant n-1 ; j \equiv n(\bmod 2))$ is given by T_{n} or by $-T_{n}$. In either case it is uniquely determined by Theorem 4 if $n \geqslant 5$. An analysis of the alternating signs of $S_{j}=t_{j}^{(n)}+t_{j-2}^{(n)}+t_{j-4}^{(n)}+\cdots$ (cf. Exercise 1.2.19 in [12]) finally establishes (29) and (30).

4. Practical Calculation of Partial Coefficient Sums

For small values of $n(1 \leqslant n \leqslant 4)$ extremal elements for F_{j} can be calculated explicitly; but the calculation is rather lenthy so that we state the results without proof.

Proposition 5. If $n \in\{1,2,3,4\}$ then either $\pm T_{n}$ or $\pm T_{n-1}$ are extremal for $F_{j}(0 \leqslant j \leqslant n)$, except in the following three instances:
(a) $n=2$ and $j=1$. An extremal polynomial is given by $P_{2}^{*}(x)=$ $\left(7+8 x-8 x^{2}\right) / 9$ and one gets $F_{1}\left(P_{2}^{*}\right)=\left\|F_{1}\right\|=15 / 9=1.66666 \ldots$.
(b) $n=3$ and $j=2$. An extremal polynomial is given by the (improper) Zolotarev polynomial $P_{3}^{*}(x)=-T_{3}(((8+\sqrt{22}) x-6+\sqrt{22}) / 14)=$
$-(270-17 \sqrt{22}) / 686+((576+261 \sqrt{22}) / 686) x+((246+15 \sqrt{22}) /$ 343) $x^{2}-((520+107 \sqrt{22}) / 343) x^{3}$ and one gets

$$
\begin{equation*}
F_{2}\left(P_{3}^{*}\right)=\left\|F_{2}\right\|=(57+22 \sqrt{22}) / 49=3.26916 \ldots \tag{32}
\end{equation*}
$$

(c) $n=4$ and $j=1$. An extremal polynomial is given by the (proper) Zolotarev polynomial with parameter $t, 1<t<1+\sqrt{2}$,

$$
Z_{4,}(x)=a_{0}(t)+a_{1}(t) x+a_{2}(t) x^{2}+a_{3}(t) x^{3}+a_{4}(t) x^{4},
$$

where

$$
\begin{aligned}
a_{0}(t)= & K_{a, b}\left(-a^{5}+a^{4}(-2+3 b)+a^{3}\left(-1+6 b-3 b^{2}\right)\right. \\
& \left.+a^{2}\left(3 b+2 b^{2}+b^{3}\right)+a\left(3 b^{2}-2 b^{3}\right)-b^{3}\right) \\
a_{1}(t)= & K_{a, b}\left(a^{2}\left(-16 b+8 b^{2}\right)+a\left(-12 b+8 b^{2}-4 b^{3}\right)\right) \\
a_{2}(t)= & K_{a, b}\left(a^{2}(8-16 b)+a\left(6-4 b+2 b^{2}\right)+6 b-4 b^{2}+2 b^{3}\right) \\
a_{3}(t)= & K_{a, b}\left(8 a^{2}+8 a b+8 b-4 b^{2}-4\right) \\
a_{4}(t)= & K_{a, b}(-6 a+2 b-4)
\end{aligned}
$$

and

$$
K_{a, b}=(b-a)^{-3}(1+a)^{-2}
$$

with

$$
\begin{aligned}
& a=a(t)=\left(1-3 t-t^{2}-t^{3}\right) /(1+t)^{3}, \\
& b=b(t)=\left(1+t+3 t^{2}-t^{3}\right) /(1+t)^{3} .
\end{aligned}
$$

One finds $\left\|Z_{4, t}\right\|_{\infty}=1$ and that $Z_{4,1}$ alternates on I at $-1<a<b<1$:

$$
Z_{4, t}(-1)=1, Z_{4, t}(a)=-1, Z_{4, t}(b)=1, Z_{4, t}(1)=-1 .
$$

The (parameterized) value $F_{1}\left(Z_{4, t}\right)=a_{0}(t)+a_{1}(t)$ is largest, as differentiation with respect to t shows, if we choose for the unique positive root of the algebraic equation of degree 14,

$$
\begin{aligned}
0= & 3+16 t+t^{2}+64 t^{3}+47 t^{4}+96 t^{5}+181 t^{6}+64 t^{7} \\
& +89 t^{8}+16 t^{9}-45 t^{10}-11 t^{12}-9 t^{14},
\end{aligned}
$$

i.e., $t=t^{*}=1.52539$..., which yields

$$
\begin{equation*}
F_{1}\left(P_{4}^{*}\right)=F_{1}\left(Z_{4, c^{*}}\right)=\left\|F_{1}\right\|=3.22652 \ldots \tag{33}
\end{equation*}
$$

Given an arbitrary $n \in \mathbb{N}$ it is not possible to determine the coefficients of P_{n}^{*} in explicit power form so that numerical methods have to be applied. However, combining V. Markov's inequalities (3) with Theorem 2, we obtain a convenient bound for the partial coefficient sums of $P_{n} \in B_{n}$. This bound is sharp if $j \equiv n(\bmod 2)$ and improves Satz 2 in [11]:

Theorem 5. Let $P_{n}=\sum_{k=0}^{n} a_{k} \mathrm{id}^{k} \in B_{n}$, then

$$
\left|F_{j}\left(P_{n}\right)\right| \leqslant \begin{cases}\left|F_{j}\left(T_{n}\right)\right|, & \text { if } j \equiv n(\bmod 2) \tag{34}\\ \left|F_{j-1}\left(T_{n}\right)\right|+\left|t_{j}^{(n-1)}\right|, & \text { if } j \equiv n-1(\bmod 2) .\end{cases}
$$

Example 2. Let $n=8$ and $P_{8}=\sum_{k=0}^{8} a_{k} \mathrm{id}^{k} \in B_{8}$. Since

$$
T_{7}(x)=-7 x+56 x^{3}-112 x^{5}+64 x^{7}
$$

and

$$
T_{8}(x)=1-32 x^{2}+160 x^{4}-256 x^{6}+128 x^{8}
$$

we obtain the inequalities

$$
\begin{gathered}
\left|a_{0}\right| \leqslant 1,\left|a_{0}+a_{1}\right| \leqslant 8,\left|a_{0}+a_{1}+a_{2}\right| \leqslant 31,\left|a_{0}+\cdots+a_{3}\right| \leqslant 87 \\
\left|a_{0}+\cdots+a_{4}\right| \leqslant 129,\left|a_{0}+\cdots+a_{5}\right| \leqslant 241,\left|a_{0}+\cdots+a_{6}\right| \leqslant 127 \\
\left|a_{0}+\cdots+a_{7}\right| \leqslant 191,\left|a_{0}+\cdots+a_{8}\right| \leqslant 1
\end{gathered}
$$

5. Closing Remarks

(i) The case $n=4, j=3$ in Proposition 5 reveals that a Chebyshev polynomial can be extremal for F_{j} even if $j \equiv n-1(\bmod 2)$.
(ii) The statement and proof of Theorem 3 can be easily carried over to the coefficient functional H_{j} given by $H_{j}\left(P_{n}\right)=a_{j}+a_{j+1}+\cdots+a_{n}$, which describes the backward partial sums or Horner sums; cf. [10].
(iii) The problem of maximizing the coefficient sums of a complex polynomial is dealt with in [6].
(iv) Interesting results on the coefficient sums of the Rudin-Shapiro polynomials can be found in [12, p. 128; 2].

References

1. N. I. Achieser, "Theory of Approximation," Ungar, New York, 1965.
2. J. Brillhart, P. Erdös, and P. Morton, On sums of Rudin-Shapiro coefficients II, Pacific J. Math. 107 (1983), 39-69.
3. B. C. Carlson and J. Todd, Zolotarev's first problem-The best approximation by polynomials of degree $\leqslant n-2$ to $x^{n}-n \sigma x^{n-1}$ in $[-1,1]$, Aequationes Math. 26 (1983), 1-33.
4. N. N. Meiman, Polynomials deviating least from zero with an arbitrary number of given coefficients, Soviet Math. Dokl. 1 (1960), 72-75.
5. I. P. Natanson, "Constructive Function Theory," Vol. I, Ungar, New York, 1964.
6. D. J. Newman, Polynomials with large partial sums, J. Approx. Theory 23 (1978), 187-190.
7. N. Obreschkoff, "Verteilung und Berechnung der Nullstellen reeller Polynome," Deutscher Verlag der Wissenschaften, Berlin, 1963.
8. H.-J. Rack, Further extremal properties of the Rogosinski polynomials, Glas. Mat. Ser. III 19 (1984), 245-253.
9. H.-J. Rack, Abschätzung der Teilsummen reeller Polynome, Math. Z. 182 (1983), 549-552.
10. M. Reimer, Bounds for the Horner sums, SIAM J. Numer. Anal. 5 (1968), 461-469.
11. M. Reimer and K. Zeller, Abschätzung der Teilsummen reeller Polynome, Math. Z. 99 (1967), 101-104.
12. T. J. Rivlin, "The Chebyshev Polynomials," Wiley, New York, 1974.
13. W. Rogosinski, Some elementary inequalities for polynomials, Math. Gaz. 39 (1955), 7-12.
14. E. V. Voronovskaja, "The Functional Method and Its Applications," Translations of Mathematical Monographs, Vol. 28, Amer. Math. Soc., Providence, RI, 1970.
